DARWIN Digitale Dissertationen German Version Strich

FU Berlin
Digitale Dissertation

Ingo Marenholz :
Molecular Genetic Characterization of the Epidermal Differentiation Complex (EDC) on Human Chromosome 1
Molekulargenetische Charakterisierung des Epidermalen Differenzierungskomplexes (EDC) auf Chromosom 1 des Menschen

FU Logo


|Abstract| |Table of Contents| |More Information|

Abstract

In recent years, three structurally related gene families which are important for the formation of a functional epidermis were localized to the long arm of human chromosome 1. They encode structural as well as regulatory proteins which cooperate during epidermal differentiation. Coordinated expression and the close linkage of the genes in chromosomal region 1q21 lead to the definition of a new gene complex, the epidermal differentiation complex (EDC). Two resources essential for the characterization of the EDC were generated within this study. To examine the genomic organization of the EDC, a contig of 24 yeast artificial chromosomes (YACs) covering 6 Mb of region 1q21 was assembled. A total of 43 genes, 20 newly generated hybridization markers, and seven polymorphic sequence-tagged site (STS)-markers were mapped within the contig. Except for two smaller DNA segments all of these loci were at least doubly linked. To achieve a higher resolution, a SalI restriction map of the YAC contig was generated and, to verify the mapping results, a genomic restriction map covering approximately 4,5 Mb of region 1q21. Using two YACs flanking the EDC as probes for dual colour fluorescence in situ hybridization (FISH) the chromosomal orientation of the gene complex was determined. The positioning of seven STS-markers yielded an integrated map of region 1q21 as a valuable tool for linkage analyses. For the transcriptional analysis of genes involved in epidermal differentiation a gridded cDNA library synthesized from differentiating keratinocytes was constructed. This library was unique in terms of its size (10 filters carrying 18432 doubly spotted clones each) and the included transcripts which even covered late stages of differentiation and enabled rapid and systematic investigations of the whole keratinocyte transcriptome. In addition, a database for the management of the cDNA library was developed. Furthermore, a gene identification method using YACs as probes to screen a cDNA library was improved. The subtractive hybridization of a gridded cDNA library with non overlapping YACs resolved nearly all problems with non specific hybridization previously described; approximately 90% of the subtractively selected cDNA clones could be mapped within the EDC. The cDNA sequences represented 40 different transcripts originating from 33 genes. Of these 21 genes were newly assigned to the EDC: ADAR1, ANXA9, HAX1, LAMRL6, PIAS3, PIP5K1A, PSMB4, PSMD4, PSMD8L, RBM8, and TPM3, as well as ten previously uncharacterized genes (NICE1 to NICE10), one of which was homologous to NOTCH2. Four additional genes, CHRNB2, RPTN, S100A11, and TDRKH, were localized within the EDC independently of the subtractive hybridization. The established gene families of the EDC were extended by two new members, RPTN and S100A11, and a polymorphic transcript of the SPRR3 gene was identified. Expression and sequence analyses of NICE1 mapping as well within the core region of the EDC suggested the existence of a new, differentiation-specifically expressed gene family. The recognition of the corresponding genes in the mouse genome verified an orthologous linkage group on mouse chromosome 3. Likewise, paralogous regions on human chromosomes 1, 6, 9, and 19 were confirmed. Moreover, four of the newly assigned EDC genes have homologues on the long arm of chromosome 15, indicating a fifth paralogous region; a further step in the elucidation of the evolution of chromosomes. As a result of this study the EDC has been extended from 2 to 6 Mb, now including 52 genes which are almost completely expressed in keratinocytes and therefore potentially contribute to the formation of the epidermis. Because the transcriptional analysis was not performed exhaustively, the number of genes should still increase. Moreover, the extension of the EDC on chromosome 1 is still unknown, making further investigations of this remarkable region of the human genome desirable.

Table of Contents

Download the whole PhDthesis as a zip-tar file or as zip-File

For download in PDF format click the chapter title

Titel

I

Inhaltsverzeichnis

III

Danksagung

VII

Symbole und Abkürzungen

IX

I EINLEITUNG

1

1 Die Haut - Aufbau und Funktion

1

2 Die Differenzierung der Epidermis

2

3 Molekularbiologie der Keratinozyten

4

4 Die Bedeutung der Region 1q21 für die Epidermisdifferenzierung

9

5 Der Epidermale Differenzierungskomplex (EDC)

12

6 EDC-assoziierte Krankheiten

12

7 Genomanalyse

15

8 Genetische Kartierung

16

9 Physikalische Kartierung

17

10 Methoden zur Identifizierung neuer Gene

20

11 Das Humangenom-Projekt

22

12 Ziele der Arbeit

25

II MATERIAL & METHODEN

27

1 Geräte

27

2 Arbeitsmaterial & Hilfsmittel

27

3 Reagenzien

28

4 Enzyme

29

5 Reagenziensets

29

6 Nucleinsäuren

30

6.1 Vektoren

30

6.2 DNA-Sonden

30

6.3 Oligonucleotid-Primer

31

6.4 Molekulargewichtsstandards

31

7 DNA-Bibliotheken

32

8 Lösungen

32

8.1 Stammlösungen

32

8.2 Puffer

33

8.3 Nährmedien

35

9 Zellen und ihre Aufzucht

35

9.1 Zellkultur

35

9.2 Hefekultur

36

9.3 Bakterienkultur

36

10 DNA-Isolierung

36

10.1 Genomische DNA des Menschen (hoch- bzw. niedermolekular)

36

10.2 DNA aus Hefezellen (hoch- bzw. niedermolekular)

37

10.3 YAC-DNA (Elektroelution)

38

10.4 Plasmid-DNA

39

10.5 Plasmidinserts (Elution mit Glas-beads)

39

10.6 Konzentrationsbestimmung von Nucleinsäuren

40

11 Restriktionsanalyse

40

11.1 Restriktion von DNA in Lösung

40

11.2 Restriktion von DNA in Agarose

40

12 DNA-Klonierung

41

12.1 Ligation

41

12.2 Herstellung kompetenter Zellen

42

12.3 Transformation 42
13 Gelelektrophorese 43
13.1 Polyacrylamidgelelektrophorese (PAGE) 43
13.2 Agarosegelelektrophorese 43
13.3 Gelelektrophorese im rotierenden Feld (ROFE) 43
13.4 DNA-Nachweis mit Ethidiumbromid 44
14 Southern-Blotting 44

15 Radioaktive Hybridisierung

45

15.1 DNA-Sonden

45

15.2 Markierung der Sonde

45

15.3 Hybridisierung

46

15.4 Autoradiographie

47

16 Polymerasekettenreaktion (PCR)

48

17 DNA-Sequenzierung (Didesoxy-Verfahren)

49

17.1 Sequenzierungsreaktion

49

17.2 Denaturierende Polyacrylamidgelelektrophorese

50

17.3 Detektion und Fehlerkorrektur

50

18 Computergestützte Sequenzanalysen

51

19 Herstellung einer feingerasterten (gridded) cDNA-Bibliothek

51

19.1 Aufziehen der Klone

52

19.2 Automatisches Auflesen der Klone (picking)

54

19.3 Vervielfältigung der cDNA-Bibliothek (replicating)

54

19.4 Automatisches Aufbringen der Klone auf Membranen (spotting)

55

19.5 Verarbeiten der Filter (processing)

56

19.6 Verwalten der cDNA-Bibliothek

56

III ERGEBNISSE

58

1 Erstellung eines YAC-Contigs der Region 1q21

58

1.1 Auswahl der YAC-Klone

58

1.2 YAC-Größenbestimmung

61

1.3 Charakterisierung instabiler YACs

61

1.4 Zusammensetzen eines Contigs des EDC

62

1.5 Erweiterung des Contigs durch die Integration genetischer Marker

63

1.6 Herstellung und Kartierung neuer Sonden zur Erhöhung der Markerdichte

66

1.7 Identifizierung rearrangierter YACs

67

1.8 Chromosomale Orientierung des EDC

67

1.9 Diskussion

69

2 Identifizierung neuer EDC-Gene durch subtraktive Hybridisierung

70

2.1 Eine direkte Methode zur Identifizierung neuer Gene

71

2.2 Hybridisierung der feingerasterten cDNA-Bibliothek mit einem YAC

71

2.3 Auswertung der Hybridisierung

72

2.4 Hybridisierung der feingerasterten cDNA-Bibliothek mit einem zweiten YAC

75

2.5 Subtraktive Auswertung

75

2.6 Hybridisierungsergebnisse zweier weiterer YACs aus der centromeren Region

78

2.7 Mögliche Fehlerquellen und ihre Vermeidung

78

3 Kartierung der neuen EDC-Gene

79

3.1 YAC-Restriktionskarte

80

3.2 Genomische Restriktionskarte

85

3.3 Fusion der physikalischen Karten

88

3.4 Integration der genetischen Marker

88

4 Charakterisierung der cDNA-Sequenzen

90

4.1 Ermittlung der cDNA-Sequenzen

91

4.2 cDNA-Sequenzen bekannter EDC-Gene

91

4.3 cDNA-Sequenzen anderer bekannter Proteine

94

4.4 cDNA-Sequenzen unbekannter Funktion

94

IV DISKUSSION

102

1 Die Ressourcen

102

1.1 Das YAC-Contig des EDC

102

1.2 Die feingerasterte Keratinozyten-cDNA-Bibliothek

104

2 Die Hybridisierungsmethode

106

3 Die integrierte Karte der Region 1q21

108

4 Die neuen EDC-Gene

109

5 Der Genkomplex

116

5.1 EDC oder "CDC"?

116

5.2 Kontrolle der Genexpression

117

5.3 Orthologie im Mausgenom - der EDC der Maus

119

5.4 Paralogie im menschlichen Genom

121

6 Ausblicke

124

Va ZUSAMMENFASSUNG

126

Vb SUMMARY

128

Literaturverzeichnis

130

Publikationsliste

149


More Information:

Online available: http://www.diss.fu-berlin.de/2002/195/indexe.html
Language of PhDThesis: german
Keywords: epidermal, differentiation, complex, EDC, 1q21, chromosome 1
DNB-Sachgruppe: 32 Biologie
Date of disputation: 02-Oct-2002
PhDThesis from: Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin
First Referee: Prof. Dr. Andreas Ziegler
Second Referee: Prof. Dr. Volker A. Erdmann
Contact (Author): ingo.marenholz@kispi.unizh.ch
Contact (Advisor): andreas.ziegler@charite.de
Date created:18-Sep-2002
Date available:25-Sep-2002

 


|| DARWIN|| Digitale Dissertationen || Dissertation|| German Version|| FU Berlin|| Seitenanfang ||


Mail-Icon Fragen und Kommentare an:
darwin@inf.fu-berlin.de

© Freie Universität Berlin 1999