DARWIN Digitale Dissertationen German Version Strich

FU Berlin
Digitale Dissertation

Ralph Noeske :
High field (3 Tesla) NMR tomography:
Imaging of the human heart and NMR thermography in phantoms for deep hyperthermia
Anwendung der Hochfeld-(3-Tesla)-NMR-Tomographie:

FU Logo


|Abstract| |Table of Contents| |More Information|

Abstract

The aim of this work was to demonstrate the feasibility of NMR tomography at 3 Tesla for selected medical applications and to investigate the advantages and disadvantages of the high field strength.

For cardiac imaging a fast, ECG gated, flow compensated gradient echo sequence was implemented and optimized. Within a breath-hold period (17 heartbeats) artifact-free images of slices of any desired orientation, e.g. short axis slices, and cine-sequences, i.e. the movement of the heart within a slice during the heart cycle, could be acquired. With the use of specially developed multi-element surface coils for receiving in combination with the whole body resonator for transmitting, an increase in signal-to-noise ratio (SNR) by a factor of 2 was achieved compared to a field strength of 1.5 T.

Regions of different magnetic susceptibility cause larger B0 inhomogeneities (± 1 ppm), leading to shorter T2* relaxation times within the left ventricle (< 20 ms). Therefore cardiac imaging, and especially the use of real-time imaging sequences, which are prone to artifacts, is likely to be ore difficult at 3 T compared to lower field strength. The decrease of T2* with increasing magnetic field strength is attributed to susceptibility effects; hence a higher BOLD (Blood Oxygenation Level Dependent) contrast is expected at 3 T, which can be exploited for tissue oxygenation and perfusion measurements.

At 3 T the RF-wavelength within the body is comparable to body dimensions, thus dielectric resonances influence the electromagnetic field distribution. This may lead to B1 field inhomogeneities. Furthermore, compared to 1.5 T, 4 fold higher RF-power is needed to achieve the same flip angle of the magnetization at the same pulse length. Therefore the use of spin echo sequences and various preparation sequences is more difficult at 3 T.

In the second part of the work a MR thermography technique (temperature probe method), using a paramagnetic Praseodymium complex (Pr-MOE-DO3A) as a contrast media, was investigated in combination with a fast spectroscopic imaging technique (Echo Planar Spectroscopic Imaging, EPSI) aiming at therapy control of regional hyperthermia treatment. Using the EPSI method, in a phantom the distribution of absolute temperature was measured in a volume of 24 ´ 24 ´ 24 cm3 (voxel size 1.5 ´ 1.5 ´ 1.5 cm3) within 14 s to an accuracy of ± 0,45 °C.

This work demonstrates that the use of higher field strengths is not only accompanied by advantages but also by substantial disadvantages. Although having great potential for medical research and special areas of medical diagnostics and therapy control, MR imaging and spectroscopy at high field strengths (? 3 T) is unlikely to replace the clinically well-established MR tomography at lower field strengths (1.0 – 1.5 T).


Table of Contents

Download the whole PhDthesis as a zip-tar file or as zip-File

For download in PDF format click the chapter title

Titel
Inhaltsverzeichnis
1 Einleitung 1
2 Grundlagen der Magnetresonanz 5
2.1 Kernmagnetisierung 5
2.2 Blochsche Gleichungen 7
2.3 Relaxation 8
2.4 Kernresonanz 10
2.5 Chemische Verschiebung 12
2.6 Ortskodierung 13
2.7 Magnetresonanzspektroskopie 26
2.8 Kontrast 28
2.9 Signal-Rausch-Verhältnis 30
3 Der Hochfeld-3-Tesla-Tomograph 32
3.1 Supraleitender Magnet 32
3.2 Gradientensystem 33
3.3 HF-System 35
3.4 Spulen 37
4 Tagging-Phantomexperimente 47
4.1 Tagging-Präparations-Sequenz 47
4.2 Experimenteller Aufbau 59
4.3 Experimente 63
4.4 Schlußfolgerung 68
5 Bildgebung des menschlichen Herzens bei 3 Tesla 70
5.1 Anatomie und Physiologie des menschlichen Herzens 71
5.2 Segmentierte TurboGRASS-Sequenz 73
5.3 Messung der T2*-Relaxationszeiten im Myokard 91
5.4 Messung der T1-Relaxationszeiten im Myokard und Blut 93
5.5 Messung der B0-Feldverteilung im Herzen 94
5.6 Messung des Signal-Rausch-Verhältnisses im Myokard 96
5.7 Vergleichsmessung an einem 1,5-Tesla-Tomographen 105
5.8 Messung des Kontrast-Rausch-Verhältnisses zwischen Blut und Myokard 108
5.9 Tagging 108
5.10 Schlußfolgerung 109
6 Grundlagen der MR-Thermometrie 112
6.1 Hyperthermie 112
6.2 Temperaturabhängige Parameter 116
7 Thermosonden-Methode 121
7.1 Pr-MOE-DO3A 124
7.2 Spektroskopische Bildgebung 129
7.3 Schnelle spektroskopische Bildgebung 138
7.4 Schlußfolgerung 145
8 Zusammenfassung 148
A Sequenzen-Programmierung 152
A.1 Puls- und Gradientenprogramm 152
A.2 ACQP und IMND 155
B Messung der k-Raum-Trajektorien 157
C Spektral und räumlich selektiver Anregungspuls 159
D HLSVD 162
Literaturverzeichnis 167
Veröffentlichungen
Danksagung
Lebenslauf

More Information:

Online available: http://www.diss.fu-berlin.de/2000/126/indexe.html
Language of PhDThesis: german
Keywords: NMR tomography, cardiac imaging, signal-to-noise ratio, NMR thermography, Praseodymium complex
DNB-Sachgruppe: 29 Physik, Astronomie
Classification PACS: 87.61.-c, 87.57.Ce, 87.61.Cd, 87.63.Hg, 87.54.Br
Date of disputation: 30-Oct-2000
PhDThesis from: Fachbereich Physik, Freie Universität Berlin
First Referee: Prof. Dr. Herbert Rinneberg
Second Referee: Prof. Dr. Klaus-Dieter Kramer
Contact (Author): ralph.noeske@ptb.de
Contact (Advisor): herbert.rinneberg@ptb.de
Date created:02-Nov-2000
Date available:08-Nov-2000

 


|| DARWIN|| Digitale Dissertationen || Dissertation|| German Version|| FU Berlin|| Seitenanfang ||


Mail-Icon Fragen und Kommentare an:
darwin@inf.fu-berlin.de

© Freie Universität Berlin 1999